Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The long-term monitoring of transportation infrastructure assets at a lower cost and with short mobilization time is of significant interest to both state and federal transportation agencies in the U.S. Because of the significant improvement in spatial and temporal resolution of synthetic aperture radar (SAR) remote sensing systems and a notable reduction in the cost of data acquisition, SAR has now become a viable method to provide economic and rapid condition assessment of transportation assets. A research study was developed and performed to comprehensively perform the inspection and characterization of a pavement surface based on the amplitude of backscattering of an X-band radar. In situ characterization of the test site was first performed using traditional inertial profilers and aerial photogrammetry with unmanned aerial vehicle (UAV) surveys. The results from these in situ methods were compared with the corrected amplitude of the SAR data, which indicated that the distribution of surface roughness values computed from the inertial profiler, UAV, and SAR exhibited similar probability densities at various segmental lengths considered in this study. This suggested that the problematic areas that are evident during in situ characterization can be delineated and quantified based on the normalized radar cross section of the pavement surface. Overall, the outcome of this research exhibits the potential of SAR for future transportation asset management undertakings, and the systematic framework developed as a part of this research could be of significant interest to engineers and transportation practitioners.more » « less
-
Across the country, less than two-thirds of engineering students persist and earn a degree in engineering. A considerable amount of research on the topic has been conducted, leading to a few key ideas on why students leave engineering. In particular, disinterest in the curriculum, a limited sense of belonging, perception of inadequate academic ability, and disconnect between learning style and instruction mode are some reasons that students depart engineering. Consequently, many first-year programs aim to address one or more of these issues. The ABC program at XXX seeks to improve undergraduate civil engineering and construction management education, as well as increase retention and graduation by specifically focusing on students and curriculum in the first two years of the civil & environmental engineering and construction management (CEEC/CM) programs. Retention and graduation rates are on the lower side of national averages; therefore, faculty at the institution are taking the lead and making changes within the department. One aspect of the program is community cohesion building (CCB), where first-year students create connections, engage in community and engineering design projects, and gain exposure to CEEC/CM professions. Specific objectives are to increase the sense of learning community among students and between students and faculty, as well as increase retention in the first two years. Through biweekly meetings, participants in CCB build connections with freshman CEEC/CM peers, upper level CEEC/CM undergraduate students, CEEC graduate students, and CEEC/CM faculty. Participants also engage in the engineering design process and compete in a national engineering design challenge geared toward freshman and sophomore students. This paper describes the first one-and-a-half years of CCB implementation of a five-year grant. We present the program structure, challenges, changes, and successes. This information should prove useful to other institutions who are in the process of implementing new first-year programs, especially for institutions who have similar characteristics (i.e., urban setting, commuter school, highly diverse, high proportion of first generation students). Program evaluation focuses on the following items related to CCB objectives: 1) increase in sense of belonging as measured by an increase in social networks (tool: student survey), and 2) increase in CEEC/CM retention between freshman/sophomore and sophomore/junior years (tool: institutional data).more » « less
An official website of the United States government
